Why is torch.fft.rfft(x) faster than torch.fft.rfft(x, out=y)?
When using PyTorch’s torch.fft.rfft
function, I observed that specifying an output tensor using the out
parameter is slower than letting PyTorch manage the output internally. Here is a simple benchmark:
Why is torch.fft.rfft(x) faster than torch.fft.rfft(x, out=y)?
When using PyTorch’s torch.fft.rfft
function, I observed that specifying an output tensor using the out
parameter is slower than letting PyTorch manage the output internally. Here is a simple benchmark:
Why is torch.fft.rfft(x) faster than torch.fft.rfft(x, out=y)?
When using PyTorch’s torch.fft.rfft
function, I observed that specifying an output tensor using the out
parameter is slower than letting PyTorch manage the output internally. Here is a simple benchmark:
Why is torch.fft.rfft(x) faster than torch.fft.rfft(x, out=y)?
When using PyTorch’s torch.fft.rfft
function, I observed that specifying an output tensor using the out
parameter is slower than letting PyTorch manage the output internally. Here is a simple benchmark:
Why is torch.fft.rfft(x) faster than torch.fft.rfft(x, out=y)?
When using PyTorch’s torch.fft.rfft
function, I observed that specifying an output tensor using the out
parameter is slower than letting PyTorch manage the output internally. Here is a simple benchmark:
Why is torch.fft.rfft(x) faster than torch.fft.rfft(x, out=y)?
When using PyTorch’s torch.fft.rfft
function, I observed that specifying an output tensor using the out
parameter is slower than letting PyTorch manage the output internally. Here is a simple benchmark:
Unet isn’t working or/and i’m not using it correctly
im trying to code an upsacaling gan.
I am using a random cnn for the discriminator but for the generator i found out about unet and try to give it a go.
Unet isn’t working or/and i’m not using it correctly
im trying to code an upsacaling gan.
I am using a random cnn for the discriminator but for the generator i found out about unet and try to give it a go.
Unet isn’t working or/and i’m not using it correctly
im trying to code an upsacaling gan.
I am using a random cnn for the discriminator but for the generator i found out about unet and try to give it a go.
Why doesn’t the in-place operation on leaf variables in PyTorch optimizers cause an error?
When I want to do in-place operation on leaf variable, I get an error: