I have a CNN model and I want to use GradCam to show a heatmap on an image using the model’s last convolutional layer.
Every time I try this, it shows me that the sequential has never been called and hence no output. Tried to use ChatGPT to understand the problem a bit more but no answer.
Can you all help me with this, I’m new to CNNs and ML in general.
import os
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout, BatchNormalization, GlobalAveragePooling2D
from tensorflow.keras.layers import Rescaling, RandomFlip, RandomRotation, RandomZoom, RandomContrast
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg16 import preprocess_input
# Define paths to the dataset
base_dir = 'Organised_data - Copy'
train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')
# Paths to the dataset
train_dir = 'Organised_data - Copy/train'
validation_dir = 'Organised_data - Copy/validation'
# Parameters
batch_size = 64
img_height = 50
img_width = 50
histories = []
# Define data augmentation using Keras preprocessing layers
data_augmentation = tf.keras.Sequential([
tf.keras.layers.RandomFlip('horizontal'),
tf.keras.layers.RandomRotation(0.2),
tf.keras.layers.RandomZoom(0.2),
tf.keras.layers.RandomContrast(0.2),
])
# Load and preprocess datasets
train_dataset = tf.keras.preprocessing.image_dataset_from_directory(
train_dir,
image_size=(img_height, img_width),
batch_size=batch_size,
label_mode='binary'
)
validation_dataset = tf.keras.preprocessing.image_dataset_from_directory(
validation_dir,
image_size=(img_height, img_width),
batch_size=batch_size,
label_mode='binary'
)
# Normalize pixel values to [0, 1]
normalization_layer = tf.keras.layers.Rescaling(1./255)
train_dataset = train_dataset.map(lambda x, y: (normalization_layer(x), y))
validation_dataset = validation_dataset.map(lambda x, y: (normalization_layer(x), y))
# Apply data augmentation to the training dataset
train_dataset = train_dataset.map(lambda x, y: (data_augmentation(x, training=True), y))
# Define a simple CNN model
model = Sequential([
Rescaling(1./255, input_shape=(img_height, img_width, 3)), # Normalization layer
# Data augmentation layers
RandomFlip('horizontal'),
RandomRotation(0.2),
RandomZoom(0.2),
RandomContrast(0.2),
# Convolutional layers
Conv2D(32, (3, 3), activation='relu', padding='same'),
MaxPooling2D((2, 2)),
Conv2D(64, (3, 3), activation='relu', padding='same'),
MaxPooling2D((2, 2)),
Conv2D(128, (3, 3), activation='relu', padding='same'),
MaxPooling2D((2, 2)),
# Global Average Pooling to reduce the feature maps
GlobalAveragePooling2D(),
# Dense layers
Dense(64, activation='relu'),
Dense(1, activation='sigmoid') # Sigmoid for binary classification
])
# Compile the model
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
# Model summary
model.summary()
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
# Define callbacks
early_stopping = EarlyStopping(monitor='val_loss', patience=3, restore_best_weights=True)
model_checkpoint = ModelCheckpoint('best_model.keras', save_best_only=True, monitor='val_loss')
# Train the model
history = model.fit(
train_dataset,
validation_data=validation_dataset,
epochs=20, # You can adjust the number of epochs
callbacks=[early_stopping, model_checkpoint]
)
# Save the final model
model.save('final_model.keras')
This is till the model training.
The model summary is
Model: “sequential_1”
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ rescaling_1 (Rescaling) │ (None, 50, 50, 3) │ 0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ random_flip_1 (RandomFlip) │ (None, 50, 50, 3) │ 0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ random_rotation_1 │ (None, 50, 50, 3) │ 0 │
│ (RandomRotation) │ │ │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ random_zoom_1 (RandomZoom) │ (None, 50, 50, 3) │ 0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ random_contrast_1 │ (None, 50, 50, 3) │ 0 │
│ (RandomContrast) │ │ │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv2d (Conv2D) │ (None, 50, 50, 32) │ 896 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ max_pooling2d (MaxPooling2D) │ (None, 25, 25, 32) │ 0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv2d_1 (Conv2D) │ (None, 25, 25, 64) │ 18,496 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ max_pooling2d_1 (MaxPooling2D) │ (None, 12, 12, 64) │ 0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv2d_2 (Conv2D) │ (None, 12, 12, 128) │ 73,856 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ max_pooling2d_2 (MaxPooling2D) │ (None, 6, 6, 128) │ 0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ global_average_pooling2d │ (None, 128) │ 0 │
│ (GlobalAveragePooling2D) │ │ │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense (Dense) │ (None, 64) │ 8,256 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_1 (Dense) │ (None, 1) │ 65 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
Total params: 101,569 (396.75 KB)
Trainable params: 101,569 (396.75 KB)
Non-trainable params: 0 (0.00 B)
and the gradcam bit is
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import Model
# Load the best model
model = tf.keras.models.load_model('best_model.keras')
# Function to compute Grad-CAM
def get_gradcam_heatmap(model, img_array, last_conv_layer_name, pred_index=None):
# Ensure we get the output from the correct convolutional layer
grad_model = Model(inputs=model.inputs,
outputs=[model.get_layer(last_conv_layer_name).output, model.output])
with tf.GradientTape() as tape:
conv_outputs, predictions = grad_model(img_array)
if pred_index is None:
pred_index = tf.argmax(predictions[0])
class_channel = predictions[:, pred_index]
grads = tape.gradient(class_channel, conv_outputs)
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
conv_outputs = conv_outputs[0]
heatmap = conv_outputs @ pooled_grads[..., tf.newaxis]
heatmap = tf.squeeze(heatmap)
heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
return heatmap.numpy()
# Function to overlay heatmap on image
def display_gradcam(img_path, heatmap, alpha=0.4):
img = image.load_img(img_path)
img = image.img_to_array(img)
heatmap = np.uint8(255 * heatmap)
jet = plt.cm.get_cmap("jet")
jet_colors = jet(np.arange(256))[:, :3]
jet_heatmap = jet_colors[heatmap]
jet_heatmap = tf.image.resize(jet_heatmap, (img.shape[1], img.shape[0]))
jet_heatmap = tf.keras.preprocessing.image.array_to_img(jet_heatmap)
jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
jet_heatmap = tf.keras.preprocessing.image.img_to_array(jet_heatmap)
superimposed_img = jet_heatmap * alpha + img
superimposed_img = tf.keras.preprocessing.image.array_to_img(superimposed_img)
plt.imshow(superimposed_img)
plt.axis('off')
plt.show()
# Load and preprocess an image of your choice
img_path = '8863_idx5_x1301_y951_class1.png'
img = image.load_img(img_path, target_size=(img_height, img_width))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
# Ensure the last convolutional layer's name matches your model's architecture
last_conv_layer_name = 'conv2d_2' # replace with the actual name of the last convolutional layer in your model
heatmap = get_gradcam_heatmap(model, img_array, last_conv_layer_name)
# Display the heatmap on the original image
display_gradcam(img_path, heatmap)
so this was the GradCam bit.
And the error I got was,
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[11], line 59
57 # Ensure the last convolutional layer's name matches your model's architecture
58 last_conv_layer_name = 'conv2d_2' # replace with the actual name of the last convolutional layer in your model
---> 59 heatmap = get_gradcam_heatmap(model, img_array, last_conv_layer_name)
61 # Display the heatmap on the original image
62 display_gradcam(img_path, heatmap)
Cell In[11], line 14
11 def get_gradcam_heatmap(model, img_array, last_conv_layer_name, pred_index=None):
12 # Ensure we get the output from the correct convolutional layer
13 grad_model = Model(inputs=model.inputs,
---> 14 outputs=[model.get_layer(last_conv_layer_name).output, model.output])
16 with tf.GradientTape() as tape:
17 conv_outputs, predictions = grad_model(img_array)
File c:UserskaustDesktopKaustavpyhtonIDC detection.venvLibsite-packageskerassrcopsoperation.py:266, in Operation.output(self)
256 @property
257 def output(self):
258 """Retrieves the output tensor(s) of a layer.
259
260 Only returns the tensor(s) corresponding to the *first time*
(...)
264 Output tensor or list of output tensors.
...
292 f"{node_index}, but the operation has only "
293 f"{len(self._inbound_nodes)} inbound nodes."
294 )
ValueError: The layer sequential_1 has never been called and thus has no defined output.
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings...
Looking forward for getting some progress in this.
Tried to check again and again that if the model was not getting called and for what reason etc.
No progress.